
Planning for EVP and TSP Deployments in Rochester, New York

Joseph M. Bovenzi, AICP Marissa Tarallo, PE, PTOE ITS NY 32nd Annual Meeting – Saratoga Springs, New York June 11, 2025

Presentation Outline

- Project Overview
- Planning Process
- Findings
- Next Steps

Project Objective

- To investigate the future implementation of hardware and software that will enable upgrades and deployment of cellular/GPS-based Emergency Vehicle Preemption (EVP) and Transit Signal Priority (TSP) at Monroe County traffic signals.
 - **□** EVP: Supports emergency vehicle operations.
 - Improves emergency response times and first responder safety by giving emergency vehicles a green light while stopping all other traffic.
 - □ TSP: Supports transit operations.
 - Adjusts traffic signal timing to reduce delay and improve bus travel time reliability (extend green, queue jumping, etc.).

Key Project Stakeholders

- Monroe County Department of Transportation (MCDOT)
- NYS Department of Transportation – Region 4 (NYSDOT-R4)
- City of Rochester Fire Department (RFD)
- Rochester Genesee Regional Transportation Authority (RGRTA)
- Genesee Transportation Council (GTC)

MCDOT Traffic Operations – Overview

- James R. Pond Regional Traffic Operations Center (RTOC)
- □ 130 traffic cameras
- 830 traffic signals
 - 630 three-color traffic signals
 - □ 200 flashers/RRFBs

- Provides traffic engineering services for the City of Rochester
- EVP currently available at 403 signals

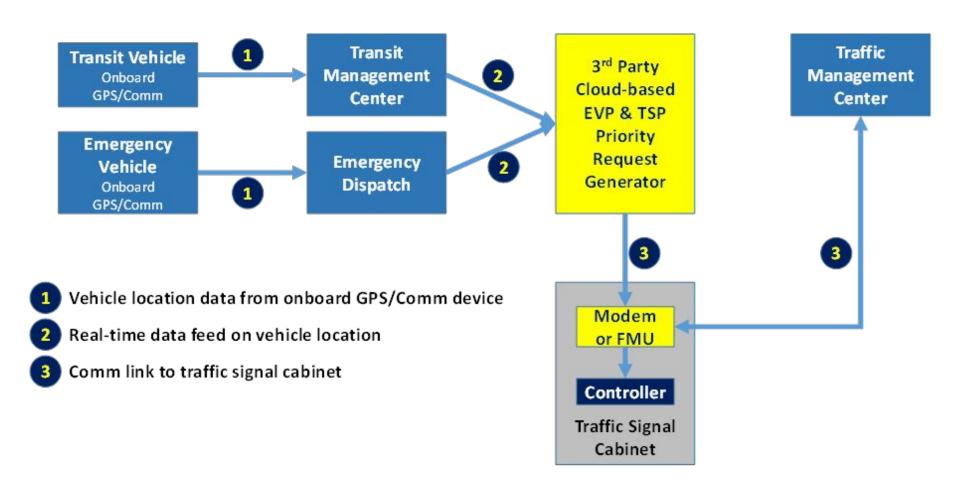
Key Tasks

- Needs Identification/ProblemStatement
- National Best Practices
- Existing Conditions and Priority Locations
- Estimated Implementation Costs (Capital, Operating, Administrative)
- Operations and Maintenance Responsibilities
- Estimate Return on Investment (ROI)

Needs Identification

- Preemption System Upgrades
 - Improve efficiency for RFD
 - Add TSP functionality for RTS
 - Enable new agencies (AMR)
 to be added to the system
- Implementation Challenges
 - Funding sources
 - Interagency coordination
 - Legacy system

EVP and TSP System – Overview


- □ Two Primary Systems: Distributed and Centralized
- □ IR and GPS/Radio most prevalent EVP

Cloud-Based Systems

- Utilize existing CAD/AVL or GTFS feed for real-time location
- Latency a key concern, particularly for EVP

Cloud-based EVP and TSP System Architecture

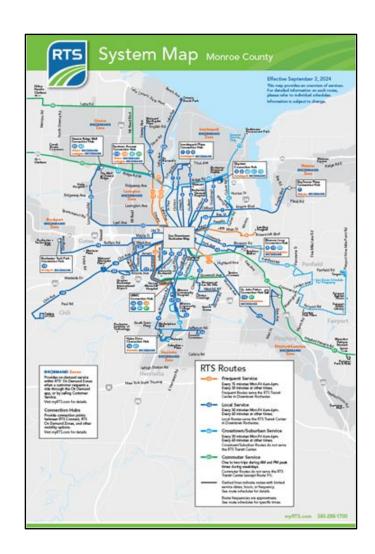
Existing Conditions

- Key Requirements:
 - NYSDOT may require edge device
 - TSP equipment must be provided for the entire bus fleet



Agency	Optical Preemption	Traffic Signal Technology	Signal Communication Infrastructure		
мсрот	GTT Opticom Optical	Econolite ASC/3 or Cobalt controllers with associated firmware	Cellular or fiber optics		
NYSDOT	GTT or Tomar Optical	2070 Controllers with Cubic/ Trafficware Firmware	Cellular or fiber optics		

Agency	Optical Emitters	CAD / AVL	Polling Frequency 10-15 seconds	
RFD	GTT Opticom 700 Series Emitters	Hexagon / Cradlepoint modem		
AMR	N/A	Zoll Rescuenet / Cradlepoint or Sierra Wireless modem		
RTS N/A		Conduent IVU-4000 system over cellular wireless modems	10-15 seconds	


Priority Location Identification

- - Frequency of preemption
 - Difficulty/safety of maneuvering at urban intersections
- - On-Time Performance
 - Ridership Levels
 - Travel Time Reliability
 - Bus Stop Locations
 - Existing congestion/queue jump

Priority Location Identification

- Best demonstrate the feasibility of cloud-based TSP
- Provide substantial benefit to the surrounding community
 - Approximately 27-43% of adjacent housing without a vehicle
 - % of zero car households exceeds the current public transit demand
 - Demonstrated potential for increased ridership

Priority Corridors

Corridor	Bus Routes	AADT (year)	Average Weekday RTS Ridership³	RFD Priority Ranking	RTS Priority Ranking	AMR Key Corridor	TTI of 1.3 or Greater	RTS Frequent Network	Highest Community Priority Input²	Market Potential Ranking ²
Lake Avenue (Lyell Ave to Route 104)	22	24,953 (2019)	1,597		2	Х	X	X	X	1
West Main Street (Broad St to Genessee St) ⁴	23/16/18	19,401 (2019)	2,299		1	Х			X	2
Dewey Avenue (Lyell Ave to Route 104)	21	15,681 (2019)	2,143	1		X		Х		4

Alternative	Lake Avenue	West Main St	Dewey Avenue
	(Lyell Ave to NY 104)	(Broad St to Genesee St)	(Lyell Ave to NY 104)
Transit Signal Priority	231%	2615%	269%

Estimated Implementation Costs – Capital Costs

Component	Price per Unit	Quantity	Total
Gener	al		
Traffic Signal Controllers	\$3,500	2	\$7,000
Communication Equipment	\$1,500	31	\$46,500
Upgrade 5 Cradlepoint R20-C7A	\$1,500	5	\$7,500
Conduent Latency Reduction	\$25,000	1	\$25,000
	.d	TOTAL	\$86,000
Vendo	r1		
Edge Devices	\$7,510	31	\$232,810
entral Software (Including installation, configuration and training)	N/A	N/A	\$0
Vehicle Equipment/Software and	One-Time Deploymen	t Costs	
RTS	\$714	180	\$128,520
RFD	\$714	54	\$38,556
AMR	\$714	60	\$42,840
		TOTAL	\$442,726
Vendo	r 2	*	
Edge Devices	\$4,500	31	\$139,500
Central Software (Including installation, configuration and training)	\$108,900	1	\$108,900
Vehicle Equipment/Software and	One-Time Deploymen	t Costs	
RTS	\$36,558	1	\$36,558
RFD			447.67
AMR	\$17,614	1	\$17,614
		TOTAL	\$302,572

Estimated Implementation Costs – Operational Costs

Total	Quantity	Term	Price per Unit	Component
			Vendor1	
\$121,520	31	10 years	\$392.00	Intersection Fee
\$45,880	31	10 years	\$148.80	Edge Device Connectivity
\$207,360	54 Vehicles	10 years	\$384.00	RFD Vehicle Fee
\$230,400	60 Vehicles	10 years	\$384.00	AMR Vehicle Fee
\$691,200	180 Vehicles	10 years	\$384.00	RTS Vehicle Fee
\$129,636	Annual Fee		,	
\$1,296,360	Total Fee			
			Vendor 2	
\$897,000	31 Signals	120 Months	\$241.13	Transit License
\$299,000	31 Signals	120 Months	\$80.38	Emergency Vehicle License
\$119,600	Annual Fee			
\$1,196,000	Total Fee			

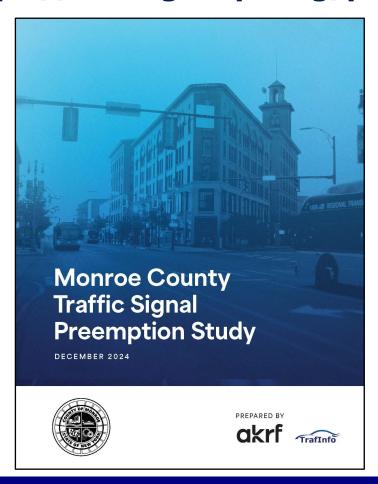
Estimated Implementation Costs – Administrative Costs

Component	First Year	Each Successive Year	Quantity	Total
	Vendor 1			
Project Manager	\$40,000	\$25,000	2 years	\$65,000
Consultant Support (Implementation, Testing and Evaluation)	\$200,000	\$100,000	2 years	\$300,000
Procurement	\$25,000	\$10,000	10 years	\$125,000
	Implementat	ion		
MCDOT (Electronics/ IT)	\$75,000	\$20,000	2 years	\$95,000
RFD	\$86,000	\$5,000	2 years	\$91,000
RTS	\$290,000	\$10,000	2 years	\$300,000
AMR	\$96,000	\$5,000	2 years	101,000
Administration/ Data Analytics	\$40,000	\$20,000	10 years	\$220,000
			Total Fee	\$1,297,000

Estimated Implementation Costs – Summary

- Total capital and operational costs approximately \$1.5 million
 (10-year projected lifecycle)
- Administrative costs approximately \$1.3 million
 - Support stakeholder staffing and consulting needs for:
 - Procurement
 - Implementation
 - Testing
 - Evaluation

Next Steps


- Form StakeholderWorking Group
- Document/UpdateStakeholder Needs
- Identify FundingOpportunities

GTC Plans and Studies

Available: https://www.gtcmpo.org/plans-and-studies

GENESEE TRANSPORTATION COUNCIL

1 South Washington Street, Suite 520 Rochester, New York 14614 www.gtcmpo.org

Assessment Questions: 1 of 3

- Which stakeholder need <u>was not</u> addressed by the Monroe County Traffic Signal Preemption Study?
 - A. Improve efficiency for the Rochester Fire Department.
 - B. Add Transit Signal Priority (TSP) functionality for the Regional Transit Service.
 - C. Add new agencies to the county's signal system.
 - D. Use Artificial Intelligence (AI) to reduce ITS maintenance expenses.

Assessment Questions: 2 of 3

- 2. Which of the following factors was considered when identifying priority locations for EVP deployments?
 - A. Integration into a regional Connected Vehicle network.
 - B. Difficulty/safety of maneuvering at urban intersections.
 - C. Building a new regional traffic operations center.
 - D. Transit vehicle replacement costs.

Assessment Questions: 3 of 3

- 3. What were the three implementation cost types analyzed for this project?
 - A. Operations, Maintenance, and Replacement.
 - B. Capital, Operations, and Replacement.
 - C. Capital, Operations, and Administrative.
 - D. Administrative, Operations, and Maintenance.