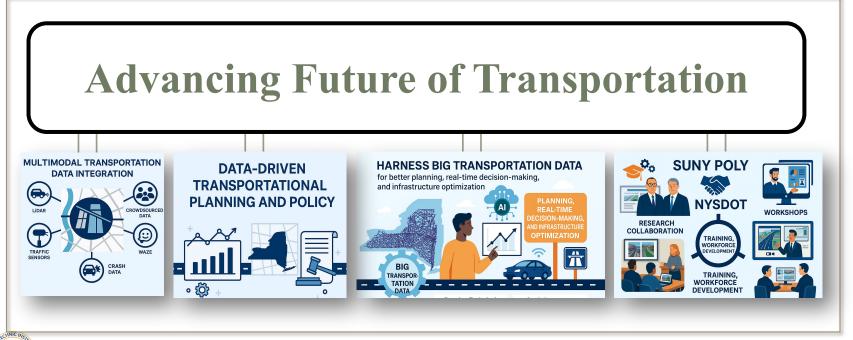


Enhancing Vulnerable Road User Safety with Data-Driven Insights

Ellwood Hanrahan II

Statewide Mobility Services Program Manager New York State Department Of Transportation

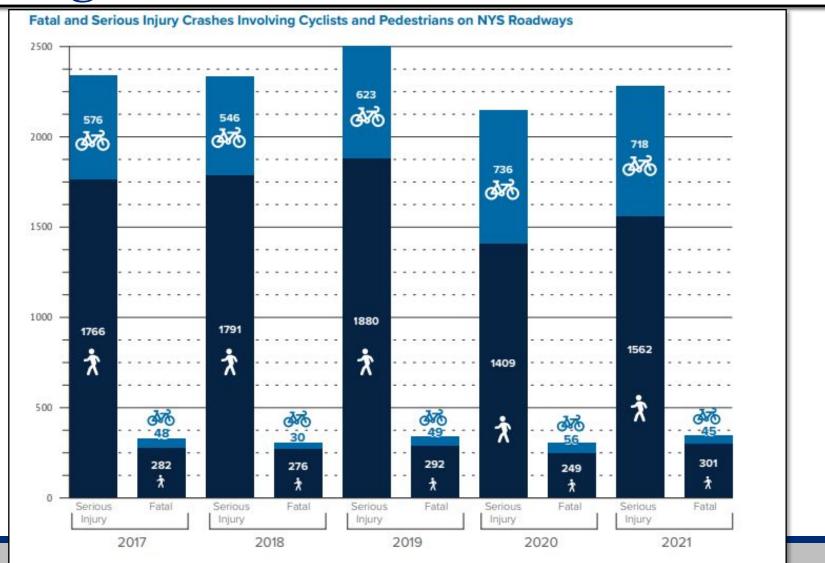
Abolfazl Karimpour, Ph.D.

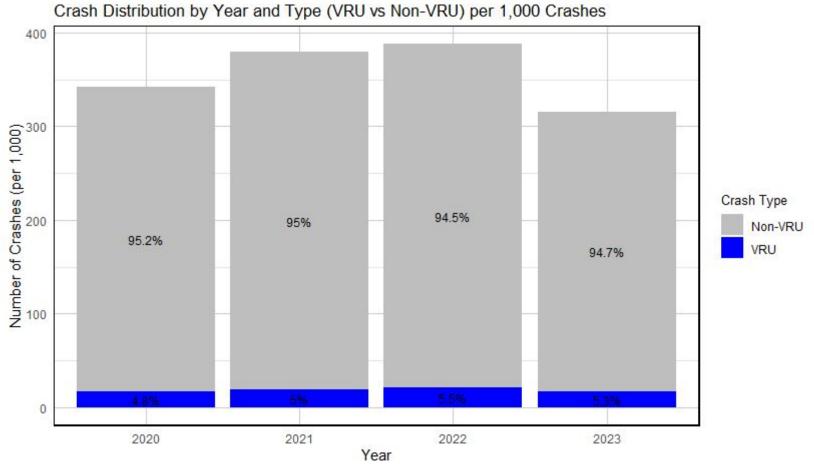

Assistant Professor
Civil & Mechanical Engineering
State University Of New York Polytechnic Institute

SUNY POLY & NYSDOT

□ SUNY Polytechnic Institute and New York State Department of Transportation are advancing the future of transportation through a dynamic, data-driven partnership. Together, we leverage multimodal data fusion, AI-powered traffic management, and predictive tools to address real-world challenges across New York State.

TRAIL @ SUNY POLY Sample Projects


AI + Data: Advancing Traffic in New York State SIGNAL TIMING OPTIMIZATION **HOLISTIC MOBILITY APPLICATION OF EMERGING** . Corridor Mobility Enhancement **DATA INFRASTRUCTURE** Travel Time Reduction **TECHNOLOGIES** ENHANCING TRAFFIC OPERATIONS AND SAFETY **Precision LiDAR Capture** CRASH **DOWNLOAD** VISUALIZATION √ Statewide **Data** Coverage Geospatial Intelligence **CRASH ANALYTICS &** INTEGRATION √ Setwork-level **PREDICTION** VIDEO-BASED performance insights


Background

SUNY POLYTECH INSTITUTE

Background

Investigating Current State Policies and Regulations

State	Method	Notes
Arkansas 2015-2021	Sliding Window Method	Little Rock had the most dangerous streets, followed by Hot Springs and Jonesboro.
Kansas 2014-2021	Three-step process with High-Injury and High-Risk Networks	Rural crashes far from a trauma center were more likely to result in death rather than serious injury.
Montana 2017-2021	Attempts at High-Risk Networks and Crash Rate Analysis	Both failed due to Montana's extremely low density.
Massachusetts 2016-2020	Crash-based and risk-based	Crash-based and risk-based analysis of segments and intersections. Risk-based analysis of towns
New Mexico 2012-2022	Geographic-based High Injury Network	Priority locations were found based on Crash Severity Index and Equity scores.
New York 2017-2021	Nine-step process based on # of crashes, potential for improvement, and equity.	129 census tracts are considered "high-risk" (in the top 5% for risk).
Arizona 2013-2022	Developed a 5-step VRU Safety Assessment	Combination of VRU crash data, equity data of underserved communities, and demographics

Potential Gaps

Lack of Dynamic Assessment

• The majority of the VRU safety plan is static and lacks real-time or continuously updated evaluation.

Missing Data Inputs

• Current assessments do not incorporate mobility patterns or equity-related data such as social justice indicators.

No Predictive Capability

• The plan lacks a predictive modeling framework to proactively identify future high-risk areas.

AI-Enabled Safety Platform

Demo

Next Steps

- ☐ Enhance predictive modeling:
 - ☐ Multiscale Geographically Weighted Regression (MGWR)
- □Develop and enhance the web platform for AI-integrated real-time safety analytics

