



Hurricane Traffic Volumes Pilot with Real-time Connected Vehicle Data May 19, 2021

Stan Young

Advanced Transportation

& Urban Scientist

National Reliable Energy Laboratory



### Background





An existing partnership has been researching the viability of accurate traffic volumes derived from probe data



- Florida
- Maryland
- Colorado
- New Hampshire
- Pennsylvania
- Massachusetts
- Tennessee
- USDOT Pooled Fund Study for non-traditional sources for AADT





## Background





**HISTORIC** volumes are viable.

**But what about REAL TIME volume!** 



Real-time volumes are the second dimension (along side travel time & speed) for full operational awareness.

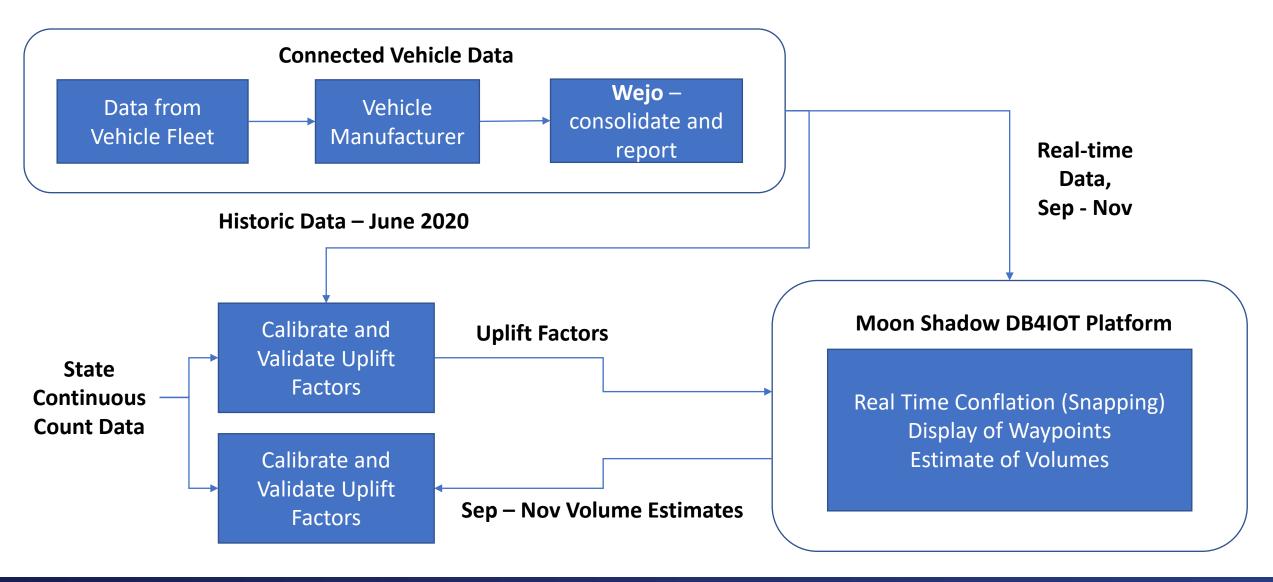
#### Hurricane Proof of Concept for The Eastern Transportation Coalition September – November 2020

#### **Problem Statement:**

Can connected vehicle data help monitor hurricane evacuation traffic and generate volume estimates in near real-time?

#### Six States:

Alabama, Florida, Georgia, North Carolina, Tennessee, Virginia

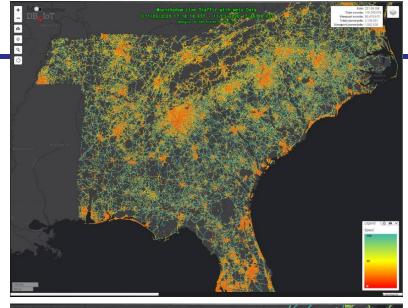

Three Months: September 1 – November 30, 2020

#### Technology:

Moonshadow **Live** Traffic with Wejo Data



#### Data Flow Framework

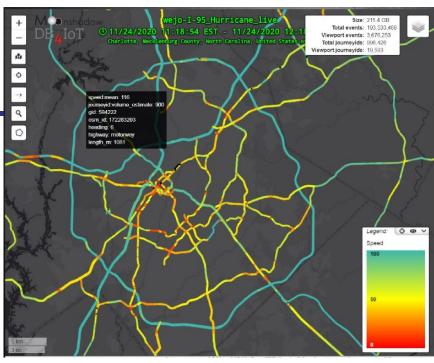


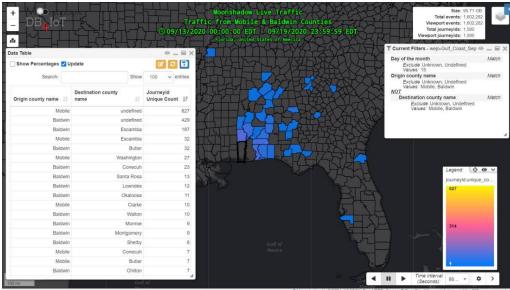



January 28, 2021

## Goals & Objectives

- Demonstrate that real-time connected vehicle data representative of about 3% of all vehicular traffic across all seven states can be delivered and visualized in realtime.
- 2. Process observed CV trips in real time, assigning them to appropriate roadway segments, and obtained counts of probe vehicles from which to estimate traffic volume.



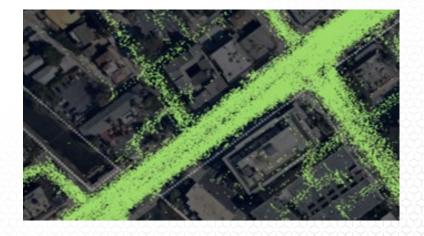



#### Goals & Objectives

- 3. Assess meaningful Volume Measures from the live data streams by calibrating to known journey penetrations rates, and relative to nominal traffic volume conditions.
- 4. Show that the mobility patterns of people, where they go and when, change significantly in the event of a major storm.



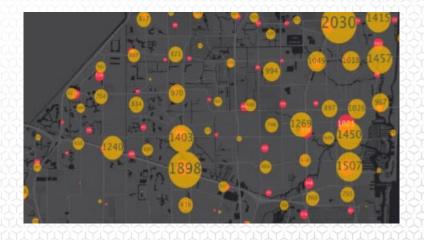



#### The Power of CVD: Unlocking Real Value

It's faster, more in-depth and offers new levels of information

3 second capture rate with 30 second latency

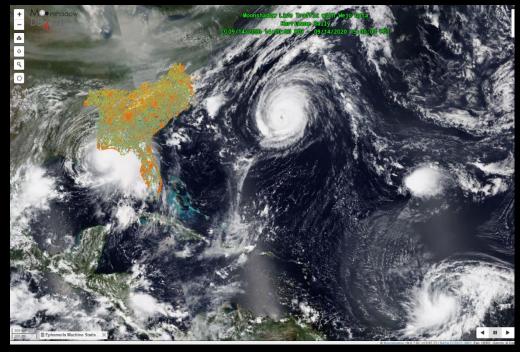



High volume of journeys tracked: 1.3 billion per month



Accurate to 3 meters, which helps identify highway lanes and parking spots




Data from historical events gives insights about incident hotspots, harsh breaking or acceleration, speeding and more





#### Hurricane Proof of Concept for The Eastern Transportation Coalition September – November 2020

| Waypoints/Day                                 | 2,500,000,000 |
|-----------------------------------------------|---------------|
| Trips/Day                                     | 7,500,000     |
| Vehicles/Day                                  |               |
| Dook Hour Vobials Hadatas nor Cosand          | 2,500,000     |
| Peak Hour Vehicle Updates per Second          | 100,000       |
| Files per Hour                                | 40,000        |
| Gigabytes/Day                                 | 50            |
| Average Vehicle to User Map Latency (seconds) | 45            |
| Average User Map Update Frequency (seconds)   | 30            |
| Vehicle Update Frequency (seconds)            | 3             |



Understanding and monitoring dwell time around POIs to determine length of stay and purpose of visit



### Proof of Concept Goal #2

Process observed CV trips in real time, assigning them to appropriate roadway segments, and obtained counts of probe vehicles from which to estimate traffic volume.





## Goal #2 - Lessons Learned

- ☐ Real-time CV data is intuitive, but volume estimates requires aggregation to segment levels
- ☐ Conflating data to map segments (OSM) in real-time is challenging, but doable
- □ DB4IOT, though robust, required data science skill
   need to work toward 'Easy Buttons'
- Need to bridge language between traffic engineering with data science / IT
- ☐ Approximately 30 seconds measured latency



### Proof of Concept Goal #3

Assess meaningful Volume Measures from the live data streams by calibrating to known journey penetrations rates, and relative to nominal traffic volume conditions.



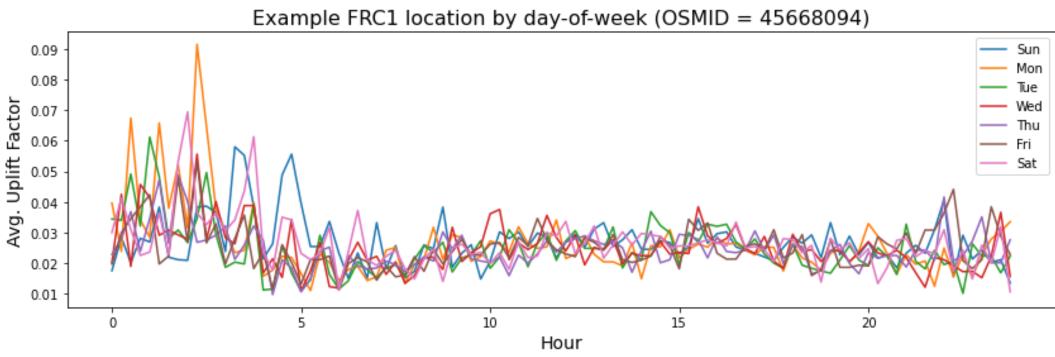


#### The Uplift Factors

- States
  - Florida, North Carolina, Virginia
- Functional Road Class (FRC) 1-3
  - 1. Motorway
  - 2. Trunk
  - 3. Primary
- Time of Day (TOD)
  - 15-minute time intervals
  - 96 time intervals per day (0-95)

#### Day of Week (DOW)

- 0. Sunday
- 1. Monday
- 2. Tuesday
- 3. Wednesday
- 4. Thursday
- 5. Friday
- 6. Saturday

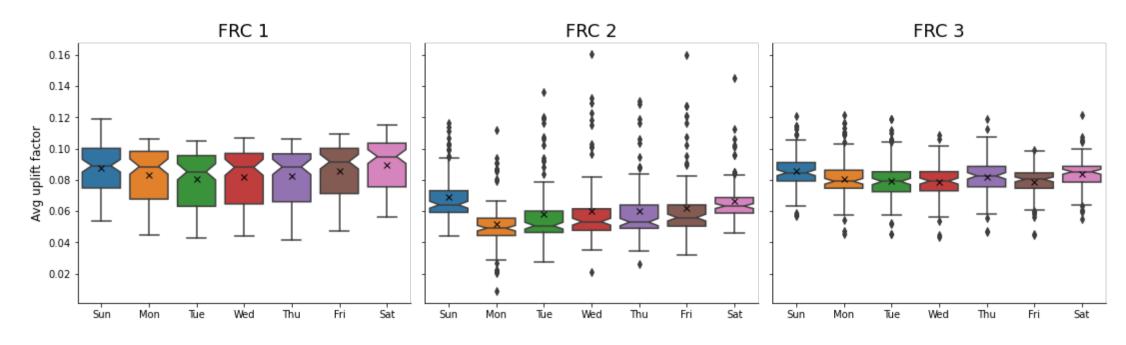









#### Results – Florida – Functional Road Class 1 OSM / DOW / TOD




• On a tech level, this slide summarizes results. CV is consistent enough to provide meaningful volume in real-time



## Uplift Factors – Florida FRC / DOW

#### Florida Average Uplift Factors by Day-of-Week



- There is some fluctuation by DOW, and the box plot provide indication of variance (in turn expected accuracy)
- The Inter-Quartile Range is typically 1% 4%, providing for reasonable accuracy

16



## Summary – Was the POC Successful?

- Despite the data processing challenges, analysis to date indicates that ...
  - Volumes of reasonable accuracy for operations are feasible in realtime through connected vehicle data
  - Simple factoring (DOW, TOD, State) provides a workable solution –
     more advanced ML/AI techniques may only improve
  - Sheer size and velocity of data will require efficient calibration, calculation, and conflation techniques –
- OVERALL the POC indicated that <u>real-time</u> CV data is sufficient to provide workable <u>real-time</u> Volume Estimates!



# State Feedback – Summary

#### Real-time display of CVD (moving vehicles) incredibly intuitive

- Confirms contraflow, incidents, etc.
- Platform initially glitchy, but stabilized

#### Volume display

- Only provided probe count (till Nov) required specialized query
- Visually the density of vehicle re-enforced ability to provide volumes
- Demo provided ample evidence that real-time probe volumes is within reach
- Raw CVD data requires specialized resources to consume



# Proof of Concept Overall Take-Aways

- CV data is viable now and will only grow in size and velocity
- ☐ Managing CV data at scale is challenging for industry, but doable
- Visualization of CVD (individual vehicles) brings intuitive value
- □ Real-time volume estimates from CV data appears viable for implementation
- Proof of Concept provided valuable insight to ...
  - Specifications for operational systems in terms of use and functionality
  - Bridge the language between Traffic and Information Technology
  - Blaze new ground to visualize real-time volume and O&D



## Next Steps

- ☐ Base CV data is being procured through the TETC Traffic Data Marketplace
- ☐ The POC will result in draft Framework, Specifications, and Approach for implementation within the Coalition
- ☐ Forming Coalition committee for guidance, oversight, and vision of the ETC Traffic Volume Project
- ☐ Expect additional information in Q2/3 of 2021





# **Thank You!**

For additional information, please contact: **Denise Markow,** TSMO Director

The Eastern Transportation Coalition

301-789-9088, <a href="mailto:dmarkow@tetcoalition.org">dmarkow@tetcoalition.org</a>